Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Article in English | MEDLINE | ID: mdl-38642101

ABSTRACT

RATIONALE AND OBJECTIVE: Avoidance of opioid withdrawal plays a key role in human opioid addiction. Here, we present a procedure for studying operant negative reinforcement in rats that was inspired by primate procedures where opioid-dependent subjects lever-press to prevent naloxone infusions. METHODS: In Experiment 1, we trained rats (n = 30, 15 females) to lever-press to escape and then avoid mild footshocks (0.13-0.27 mA) for 35 days (30 trials/d). Next, we catheterized them and implanted minipumps containing methadone (10 mg/kg/day) or saline. We then paired (4 times, single session) a light cue (20-s) with a naloxone infusion (20 µg/kg, i.v) that precipitated opioid withdrawal. Next, we trained the rats to escape naloxone injections for 10 days (30 trials/d). Each trial started with the onset of the opioid-withdrawal cue. After 20-s, the lever extended, and an infusion of naloxone (1 to 2.2 µg/kg/infusion) began; a lever-press during an 11-s window terminated the withdrawal-paired cue and the infusion. In Experiment 2, we trained rats (n = 34, 17 females) on the same procedure but decreased the footshock escape/avoidance training to 20 days. RESULTS: All rats learned to lever-press to escape or avoid mild footshocks. In both experiments, a subset, 56% (10/18) and 33% (8/24) of methadone-dependent rats learned to lever-press to escape naloxone infusions. CONCLUSIONS: We introduce an operant negative reinforcement procedure where a subset of opioid-dependent rats learned to lever-press to escape withdrawal-inducing naloxone infusions. The procedure can be used to study mechanisms of individual differences in opioid negative reinforcement-related behaviors in opioid-dependent rats.

2.
Curr Opin Neurobiol ; 86: 102856, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508102

ABSTRACT

Relapse to drug use during abstinence is a defining feature of addiction. To date, however, results from studies using rat relapse/reinstatement models have yet to result in FDA-approved medications for relapse prevention. To address this translational gap, we and others have developed rat models of relapse after voluntary abstinence from drug self-administration. One of these models is the electric barrier conflict model. Here, we introduce the model, and then review studies on behavioral and neuropharmacological mechanisms of cue-induced relapse and incubation of drug seeking (time-dependent increase in drug seeking during abstinence) after electric barrier-induced abstinence. We also briefly discuss future directions and potential clinical implications. One major conclusion of our review is that the brain mechanisms controlling drug relapse after electrical barrier-induced voluntary abstinence are likely distinct from those controlling relapse after homecage forced abstinence.

3.
Article in English | MEDLINE | ID: mdl-38453754

ABSTRACT

RATIONALE AND OBJECTIVE: We recently introduced a model of operant social reward in which female CD1 mice lever press for access to affiliative social interaction with a cagemate peer mouse of the same sex and strain. Here we determined the generality of the operant social self-administration model to male CD1 mice who, under certain conditions, will lever press to attack a subordinate male mouse. METHODS: We trained male CD1 mice to lever press for food and social interaction with a same sex and strain cagemate peer under different fixed-ratio (FR) schedule response requirements (FR1 to FR6). We then tested their motivation to seek social interaction after 15 days of isolation in the presence of cues previously paired with social self-administration. We also determined the effect of housing conditions on operant social self-administration and seeking. Finally, we determined sex differences in operant social self-administration and seeking, and the effect of housing conditions on unconditioned affiliative and antagonistic (aggressive) social interactions in both sexes. RESULTS: Male CD1 mice lever pressed for access to a cagemate peer under different FR response requirements and seek social interaction after 15 isolation days; these effects were independent of housing conditions. There were no sex differences in operant social self-administration and seeking. Finally, group-housed CD1 male mice did not display unconditioned aggressive behavior toward a peer male CD1 mouse. CONCLUSIONS: Adult socially housed male CD1 mice can be used in studies on operant social reward without the potential confound of operant responding to engage in aggressive interactions.

4.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38346894

ABSTRACT

When rats are given discrete choices between social interactions with a peer and opioid or psychostimulant drugs, they choose social interaction, even after extensive drug self-administration experience. Studies show that like drug and nondrug food reinforcers, social interaction is an operant reinforcer and induces dopamine release. However, these studies were conducted with same-sex peers. We examined if peer sex influences operant social interaction and the role of estrous cycle and striatal dopamine in same- versus opposite-sex social interaction. We trained male and female rats (n = 13 responders/12 peers) to lever-press (fixed-ratio 1 [FR1] schedule) for 15 s access to a same- or opposite-sex peer for 16 d (8 d/sex) while tracking females' estrous cycle. Next, we transfected GRAB-DA2m and implanted optic fibers into nucleus accumbens (NAc) core and dorsomedial striatum (DMS). We then retrained the rats for 15 s social interaction (FR1 schedule) for 16 d (8 d/sex) and recorded striatal dopamine during operant responding for a peer for 8 d (4 d/sex). Finally, we assessed economic demand by manipulating FR requirements for a peer (10 d/sex). In male, but not female rats, operant responding was higher for the opposite-sex peer. Female's estrous cycle fluctuations had no effect on operant social interaction. Striatal dopamine signals for operant social interaction were dependent on the peer's sex and striatal region (NAc core vs DMS). Results indicate that estrous cycle fluctuations did not influence operant social interaction and that NAc core and DMS dopamine activity reflect sex-dependent features of volitional social interaction.


Subject(s)
Conditioning, Operant , Dopamine , Rats , Animals , Male , Female , Dopamine/pharmacology , Social Interaction , Corpus Striatum , Dopamine Uptake Inhibitors/pharmacology , Nucleus Accumbens
6.
Article in English | MEDLINE | ID: mdl-38246893

ABSTRACT

RATIONALE AND OBJECTIVES: Social factors play a critical role in human drug addiction, and humans often consume drugs together with their peers. In contrast, in traditional animal models of addiction, rodents consume or self-administer the drug in their homecage or operant self-administration chambers while isolated from their peers. Here, we describe HOMECAGE ("Home-cage Observation and Measurement for Experimental Control and Analysis in a Group-housed Environment"), a translationally relevant method for studying oral opioid self-administration in mice. This setting reduces experimental confounds introduced by social isolation or interaction with the experimenter. METHODS: We have developed HOMECAGE, a method in which mice are group-housed and individually monitored for their consumption of a drug vs. a reference liquid. RESULTS: Mice in HOMECAGE preserve naturalistic aspects of behavior, including social interactions and circadian activity. The mice showed a preference for fentanyl and escalated their fentanyl intake over time. Mice preferred to consume fentanyl in bouts during the dark cycle. Mice entrained to the reinforcement schedule of the task, optimizing their pokes to obtain fentanyl rewards, and maintained responding for fentanyl under a progressive ratio schedule. HOMECAGE also enabled the detection of cage-specific and individual-specific behavior patterns and allowed the identification of differences in fentanyl consumption between co-housed control and experimental mice. CONCLUSIONS: HOMECAGE serves as a valuable procedure for translationally relevant studies on oral opioid intake under conditions that more closely mimic the human condition. The method enables naturalistic investigation of factors contributing to opioid addiction-related behaviors and can be used to identify novel treatments.

8.
Article in English | MEDLINE | ID: mdl-38123817

ABSTRACT

Xylazine, a veterinary tranquillizer known by drug users as "Tranq", is being increasingly detected in people who overdose on opioid drugs, indicating enhanced health risk of fentanyl-xylazine mixtures. We recently found that xylazine potentiates fentanyl- and heroin-induced brain hypoxia and eliminates the rebound-like post-hypoxic oxygen increases. Here, we used oxygen sensors coupled with high-speed amperometry in rats of both sexes to explore the treatment potential of naloxone plus atipamezole, a selective α2-adrenoceptor antagonist, in reversing brain (nucleus accumbens) and periphery (subcutaneous space) hypoxia induced by a fentanyl-xylazine mixture. Pretreatment with naloxone (0.2 mg/kg, IV) fully blocked brain and peripheral hypoxia induced by fentanyl (20 µg/kg, IV), but only partially decreased hypoxia induced by a fentanyl-xylazine mixture. Pretreatment with atipamezole (0.25 mg/kg, IV) fully blocked the hypoxic effects of xylazine (1.0 mg/kg, IV), but not fentanyl. Pretreatment with atipamezole + naloxone was more potent than naloxone alone in blocking the hypoxic effects of the fentanyl-xylazine mixture. Both naloxone and naloxone + atipamezole, delivered at the peak of brain hypoxia (3 min post fentanyl-xylazine exposure), reversed the rapid initial brain hypoxia, but only naloxone + atipamezole decreased the prolonged weaker hypoxia. There were no sex differences in the effects of the different drugs and their combinations on brain and peripheral oxygen responses. Results indicate that combined treatment with naloxone and atipamezole is more effective than naloxone alone in reversing the hypoxic effects of fentanyl-xylazine mixtures. Naloxone + atipamezole treatment should be considered in preventing overdoses induced by fentanyl-xylazine mixtures in humans.

9.
Neuropsychopharmacology ; 48(11): 1639-1647, 2023 10.
Article in English | MEDLINE | ID: mdl-37316576

ABSTRACT

Drug overdoses from opioids and stimulants are a major cause of mortality in the United States. It is unclear if there are stable sex differences in overdose mortality for these drugs across states, whether these differ across the lifespan, and if so, whether they can be accounted for by different levels of drug misuse. This was a state-level analysis of epidemiological data on overdose mortality, across 10-year age bins (age range: 15-74), using the CDC WONDER platform for decedents in the United States in 2020-1. The outcome measure was rate of overdose death (per 100,000) for: synthetic opioids (e.g., fentanyl), heroin, psychostimulants with potential for misuse (e.g., methamphetamine), and cocaine. Multiple linear regressions controlled for ethnic-cultural background, household net worth, and sex-specific rate of misuse (from NSDUH, 2018-9). For all these drug categories, males had greater overall overdose mortality than females, after controlling for rates of drug misuse. The mean male/female sex ratio of mortality rate was relatively stable across jurisdictions: synthetic opioids (2.5 [95% CI, 2.4-7]), heroin, (2.9 [95% CI, 2.7-3.1], psychostimulants (2.4 [95% CI, 2.3-5]), and cocaine (2.8 [95% CI, 2.6-9]). With data stratified in 10-year age bins, the sex difference generally survived adjustment (especially in the 25-64 age range). Results indicate that males are significantly more vulnerable than females to overdose deaths caused by opioid and stimulant drugs, taking into account differing state-level environmental conditions and drug misuse levels. These results call for research into diverse biological, behavioral, and social factors that underlie sex differences in human vulnerability to drug overdose.


Subject(s)
Central Nervous System Stimulants , Cocaine , Drug Overdose , Humans , Female , Male , United States/epidemiology , Adolescent , Young Adult , Adult , Middle Aged , Aged , Analgesics, Opioid , Heroin
10.
Nat Med ; 29(6): 1487-1499, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291212

ABSTRACT

Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .


Subject(s)
Cannabis , Hallucinogens , Marijuana Abuse , Substance Withdrawal Syndrome , Animals , Mice , Double-Blind Method , Dronabinol/adverse effects , Hallucinogens/therapeutic use , Randomized Controlled Trials as Topic , Substance Withdrawal Syndrome/drug therapy
11.
J Neurosci ; 43(14): 2597-2614, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36898838

ABSTRACT

We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.


Subject(s)
Fentanyl , Piriform Cortex , Humans , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Food Preferences , Food , Self Administration , Extinction, Psychological , Drug-Seeking Behavior/physiology
13.
Biol Psychiatry ; 93(12): 1118-1126, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36841701

ABSTRACT

BACKGROUND: (S)-ketamine is an NMDA receptor antagonist, but it also binds to and activates mu opioid receptors (MORs) and kappa opioid receptors in vitro. However, the extent to which these receptors contribute to (S)-ketamine's in vivo pharmacology is unknown. METHODS: We investigated the extent to which (S)-ketamine interacts with opioid receptors in rats by combining in vitro and in vivo pharmacological approaches, in vivo molecular and functional imaging, and behavioral procedures relevant to human abuse liability. RESULTS: We found that the preferential opioid receptor antagonist naltrexone decreased (S)-ketamine self-administration and (S)-ketamine-induced activation of the nucleus accumbens, a key brain reward region. A single reinforcing dose of (S)-ketamine occupied brain MORs in vivo, and repeated doses decreased MOR density and activity and decreased heroin reinforcement without producing changes in NMDA receptor or kappa opioid receptor density. CONCLUSIONS: These results suggest that (S)-ketamine's abuse liability in humans is mediated in part by brain MORs.


Subject(s)
Ketamine , Rats , Humans , Animals , Ketamine/pharmacology , Receptors, Opioid, mu/physiology , Receptors, N-Methyl-D-Aspartate , Heroin , Receptors, Opioid/metabolism , Receptors, Opioid, kappa/metabolism
14.
Sci Adv ; 9(2): eadd8687, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36630511

ABSTRACT

High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.

15.
medRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36711659

ABSTRACT

Importance: Drug overdoses from opioids like fentanyl and heroin and stimulant drugs such as methamphetamine and cocaine are a major cause of mortality in the United States, with potential sex differences across the lifespan. Objective: To determine overdose mortality for specific drug categories across the lifespan of males and females, using a nationally representative state-level sample. Design: State-level analyses of nationally representative epidemiological data on overdose mortality for specific drug categories, across 10-year age bins (age range: 15-74). Setting: Population-based study of Multiple Cause of Death 2020-2021 data from the Centers of Disease Control and Prevention (CDC WONDER platform). Participants: Decedents in the United States in 2020-2021. Main outcome measures: The main outcome measure was sex-specific rates of overdose death (per 100,000) for: synthetic opioids excluding methadone (ICD-10 code: T40.4; predominantly fentanyl), heroin (T40.1), psychostimulants with potential for misuse, excluding cocaine (T43.6, predominantly methamphetamine; labeled "psychostimulants" hereafter), and cocaine (T40.5). Multiple regression analyses were used to control for ethnic-cultural background, household net worth, and sex-specific rate of misuse of the relevant substances (from the National Survey on Drug Use and Health, 2018-2019). Results: For each of the drug categories assessed, males had greater overall overdose mortality than females, after controlling for rates of drug misuse. The mean male/female sex ratio of mortality rate for the separate drug categories was relatively stable across jurisdictions: synthetic opioids (2.5 [95%CI, 2.4-2.7]), heroin, (2.9 [95%CI, 2.7-3.1], psychostimulants (2.4 [95%CI, 2.3-2.5]), and cocaine (2.8 [95%CI, 2.6-2.9]). With data stratified in 10-year age bins, the sex difference generally survived adjustment for state-level ethnic-cultural and economic variables, and for sex-specific misuse of each drug type (especially for bins in the 25-64 age range). For synthetic opioids, the sex difference survived adjustment across the lifespan (i.e., 10-year age bins ranging from 15-74), including adolescence, adulthood and late adulthood. Conclusions and Relevance: The robustly greater overdose mortality in males versus females for synthetic opioids (predominantly fentanyl), heroin, and stimulant drugs including methamphetamine and cocaine indicate that males who misuse these drugs are significantly more vulnerable to overdose deaths. These results call for research into diverse biological, behavioral, and social factors that underlie sex differences in human vulnerability to drug overdose.

16.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717230

ABSTRACT

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Subject(s)
Heroin Dependence , Heroin , Rats , Male , Female , Animals , Heroin/pharmacology , Analgesics, Opioid/pharmacology , Nucleus Accumbens , Receptors, Opioid/metabolism , Rats, Transgenic , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Pain/metabolism
18.
J Neurosci ; 42(50): 9298-9314, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517252

ABSTRACT

Until recently, most modern neuroscience research on addiction using animal models did not incorporate manipulations of social factors. Social factors play a critical role in human addiction: social isolation and exclusion can promote drug use and relapse, while social connections and inclusion tend to be protective. Here, we discuss the state of the literature on social factors in animal models of opioid and psychostimulant preference, self-administration, and relapse. We first summarize results from rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of traditional experimenter-controlled social interaction procedures on opioid and psychostimulant conditioned place preference, self-administration, and relapse. Next, we summarize behavioral and brain-mechanism results from studies using newer operant social-interaction procedures that inhibit opioid and psychostimulant self-administration and relapse. We conclude by discussing how the reviewed studies point to future directions for the addiction field and other neuroscience and psychiatric fields, and their implications for mechanistic understanding of addiction and development of new treatments.SIGNIFICANCE STATEMENT In this review, we propose that incorporating social factors into modern neuroscience research on addiction could improve mechanistic accounts of addiction and help close gaps in translating discovery to treatment. We first summarize rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of both traditional experimenter-controlled and newer operant social-interaction procedures. We then discuss potential future directions and clinical implications.


Subject(s)
Analgesics, Opioid , Central Nervous System Stimulants , Animals , Humans , Analgesics, Opioid/pharmacology , Reward , Central Nervous System Stimulants/pharmacology , Brain , Recurrence
19.
Neuropsychopharmacology ; 47(12): 2132-2139, 2022 11.
Article in English | MEDLINE | ID: mdl-35906489

ABSTRACT

The high efficacy mu-opioid receptor (MOR) agonist methadone is an effective opioid use disorder (OUD) medication used exclusively in opioid-dependent patients. However, methadone has undesirable effects that limit its clinical efficacy. Intermediate efficacy MOR agonists may treat OUD with fewer undesirable effects. We compared the effects of methadone with the intermediate efficacy MOR agonist TRV130 (oliceridine) on fentanyl-vs.-food choice and somatic withdrawal signs in opioid-dependent and post-opioid-dependent rats. Male rats (n = 20) were trained under a fentanyl-vs.-food choice procedure. Rats were then provided extended fentanyl (3.2 µg/kg/infusion) access (6 p.m.-6 a.m.) for 10 days to produce opioid dependence/withdrawal. Rats were treated with vehicle (n = 7), TRV130 (3.2 mg/kg; n = 8), or methadone (3.2 mg/kg; n = 5) three times per day after each extended-access session (8:30 a.m., 11 a.m., 1:30 p.m.). Withdrawal sign scoring (1:55 p.m.) and choice tests (2-4 p.m.) were conducted daily. Vehicle, TRV130, and methadone effects on fentanyl choice were redetermined in post-opioid-dependent rats. Vehicle-, TRV130-, and methadone-treated rats had similar fentanyl intakes during extended access. Vehicle-treated rats exhibited increased withdrawal signs and decreased bodyweights. Both methadone and TRV130 decreased these withdrawal signs. TRV130 was less effective than methadone to decrease fentanyl choice and increase food choice in opioid-dependent rats. Neither methadone nor TRV130 decreased fentanyl choice in post-opioid-dependent rats. Results suggest that higher MOR activation is required to reduce fentanyl choice than withdrawal signs in fentanyl-dependent rats. Additionally, given that TRV130 did not precipitate withdrawal in opioid-dependent rats, intermediate efficacy MOR agonists like TRV130 may facilitate the transition of patients with OUD from methadone to lower efficacy treatments like buprenorphine.


Subject(s)
Buprenorphine , Opioid-Related Disorders , Substance Withdrawal Syndrome , Analgesics, Opioid , Animals , Buprenorphine/pharmacology , Fentanyl/pharmacology , Male , Methadone/pharmacology , Methadone/therapeutic use , Narcotics , Opioid-Related Disorders/drug therapy , Rats , Receptors, Opioid , Spiro Compounds , Substance Withdrawal Syndrome/drug therapy , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL
...